

How Can Hydrogen Become a Viable Fuel?

- The Risks of using H2 must be managed.
- Vehicles using H2 must be as Productive and Flexible as diesel equipment.
- The Benefit of using H2 must be substantial.
- The Cost of conversion from diesel must be justifiable.

The Goals of the Demonstration

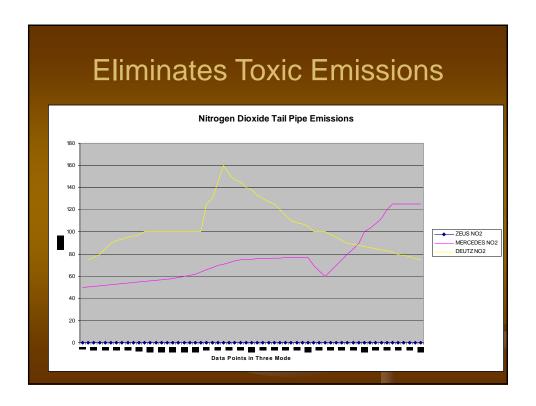
- Hydrogen can be safely used as a fuel in underground mining provided adequate engineering and administrative controls are in place.
- Hydrogen vehicles can be designed so that the operation and functionality of the vehicle is no different than current mine equipment.
- Hydrogen vehicles will provide a clean mine atmosphere.

What the Demonstration Did Not Address

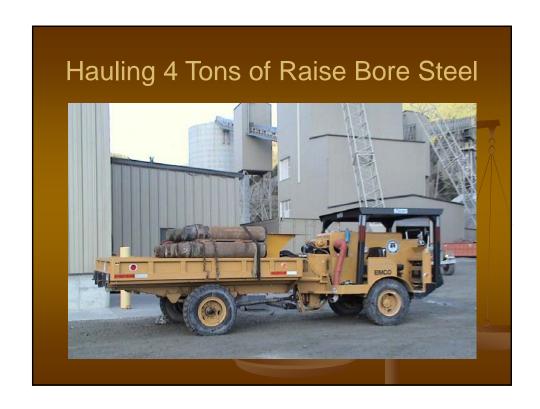
 COST – In order for Hydrogen to be a truly viable fuel, an infrastructure must develop to bring the cost of fuel and components down through economies of scale.

The Demonstration Vehicle "ZEUS"

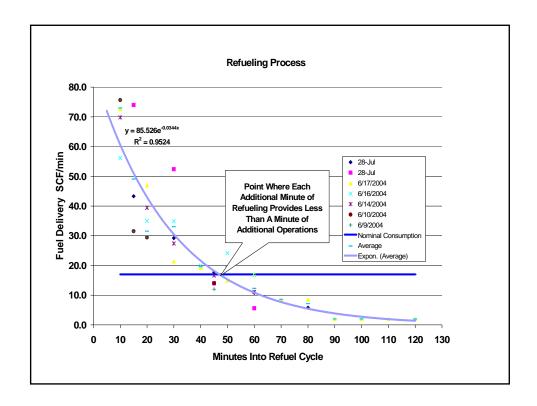
- EIMCO 975, 4 WD,5 ton articulated truck
- CAT 3304, 70 KW Engine
- Parrallel Induction and Spark Ignition Conversion
- Tubo Boost & After-cooler added.
- 8 Kg H2 capacity
- Metal Hydride Storage
- Waste heat from engine and exhaust used to liberate H2


Safety Systems & Controls

- Linear Fire Detection along entire fuel path
- Hydrogen Sensors in all enclosed areas with fuel lines – set to alarm at 25% LFL
- Collision sensor set to alarm at 8G in horizontal plane
- Fuel System over and under pressure alarm
- All Alarms result in engine shutdown, visual and audible alarm and isolation of fuel system.


Ventilation Requirements

- Ventilation is needed to replace oxygen consumed by the engine and control the risk of Fire/Explosion from a catastrophic failure of the fuel storage system.
- Engine O2 Consumption Requires ~5,000 CFM to maintain >20% O2.
- Potential catastrophic release requires 14,000 CFM to maintain H2<LFL or, 5,000 CFM to maintain H2<LEL
 - Mine Testing found the fuel supply could be reformulated to bring LFL requirement down to 5000 CFM



Operational Functionality

- 90 Hrs operating at Mine Site
- Wide Range of Duty Conditions
- Fuel Economy mirrored diesel consumption for fuel value
- Operating range on 8 kg (~25 liters diesel equivalent):
 - 20 km climbing 10% grades fully loaded
 - 100 km rolling terrain at 30 km/hr

The Opportunities (Problems)

- Metal Hydride Storage system developed fatigue leaks in coolant jacket after ~ 1000 total hours of operation. – Repaired but design could be more robust
- An economical means to estimate the remaining fuel supply is needed. – Counting Engine Revolutions is too crude.
- Hydrogen Sensors need protection from dust and moisture.
- Hydride Formulation should minimize low temperature and pressure hydrides to reduce ventilation rates.
- For Combustion Applications, better fuel/air control is needed to improve efficiency.

