Application of Air Pollution Emissions Equations to Surface Mining

James W.S. Young, Ph.D., P.Eng.

SENES Consultants Limited

MDEC 2006

Overview

- what is an emission inventory?
- sources and types of emissions
- government reporting requirements
- science of emissions equations
- control of emissions
 - typical approaches
 - -unique approaches for surface mining

October 2006

SENES Consultants Limited

What is an emissions inventory?

 it is an accounting of each gram of contaminant emitted to the atmosphere from each source within the facility

October 2006

SENES Consultants Limited

Sources and Types of Emissions

- emissions from vehicles and equipment
 - engine emissions (PM, SO₂, NO_x, VOCs)
- process specific emissions
 - blasting (PM TSP, PM₁₀, PM₂₅)
 - drop points (PM)
- fugitive emissions
 - vehicle travel (PM)
 - wind erosion from stockpiles and open areas (PM)

October 2006

SENES Consultants Limited

Reporting Requirements ... 1

- two basic reporting requirements
 - NPRI
 - O.Reg.127
- they require:
 - an annual report of any quantities of emissions above certain thresholds
 - preparation and maintenance of records of these emission quantities for 3-7 years
 - making records publicly available by posting on the Web or during regular business hours
 - if emissions of smog related pollutants are above a threshold then Smog Season (May 1 to September 1) reporting is also required

October 2006

SENES Consultants Limited

5

Reporting Requirements ... 2

- reporting to NPRI and O.Reg.127 does
 NOT relieve industry from having a
 Certificate of Approval (Air) to emit
 pollutants to the atmosphere
- a C of A is based on the equipment based maximum possible emissions over 30 minutes whereas O.Reg.127, and NPRI, is based on actual production over one year

October 2006

SENES Consultants Limited

Screening Criteria for Reporting Table 2A Contaminants: -use coal, refuse, wood, waste oil; -name plate capacity > 3MMBtu/hr; -use 3000+ kg/yr of solvents; -use 3000+ kg/yr of coating materials; -use 3000+ kg/yr of printing ink; and/or -use 5000+ kg/yr of welding rods/wires

SENES Consultants Limited

Table 2A Contaminants (kg/yr) Carbon dioxide 100,000,000 Carbon monoxide 20,000 ◆ HFC-134A **1**0 Methane 5,000,000 Nitrous Oxide 2,700 14,000 Oxides of Nitrogen Particulate Matter 20,000 PM10 ◆ 500 ◆ PM2.5 **4** 300 Sulphur Dioxide 20,000 Total VOCs 10,000 SENES Consultants Limited

Screening Criteria for Reporting

- ◆ Table 2B Contaminants
 - Total employee working hours > 20,000/yr

AND

 MPO in an amount equal to or greater than the Table 2B contaminant thresholds

October 2006

SENES Consultants Limited

9

Screening Criteria for Reporting

- ◆ Table 2C Contaminants
 - MOE no longer includes Table 2C directly
 "Table 2C consists of all contaminants listed in the most current National Pollutant Release Inventory (NPRI)"

October 2006

SENES Consultants Limited

NPRI – Part 4 - CACs NPRI now requires assessment (and reporting) for emissions of CACs if: employees worked > 20,000 hours/yr unless: substance only released from a stationary sources; and cumulative capacity of equipment < 10 MMBtu/hr; and only type of fuel is natural gas, liquefied petroleum gas or No. 1 or 2 fuel oil. OR

NPRI: Part 4 Reporting Thresholds Carbon Monoxide Oxides of Nitrogen (as NO₂) PM_{2.5} PM₁₀ Sulphur Dioxide Total Particulate Matter (TSP) VOCs SENES Consultants Limited 20 tonnes 20 tonnes 20 tonnes 10 tonnes

NPRI Parts 1, 2 and 3

(>20,000 hrs/yr)

- Part 1
 - Group 1 (10 tonnes);
 - Group 2 (mercury 5 kg)
 - Group 3 (cadmium 5 kg)
 - Group 4 (arsenic, hexavalent chromium, lead, tetraethyl lead – 50 kg)
- ◆ Part 2 17 PAHs (50 kg total)
- Part 3 hexachlorobenzene and dioxins/furans (activity based)

October 2006

SENES Consultants Limited

1

General Approach to Estimating Emissions

Emission Factor Approach

$$E_{vr} = EF * AF$$

where $E_{yr} = annual emissions in kg/year$

EF = emission factor of pollutant in kg/unit of activity

AF = activity factor in units/year

Control of Emissions Approach

$$E_c = E_{yr} * (1 - C/100)$$

where E_c = controlled annual emissions in kg/year C = control efficiency in %

October 2006

SENES Consultants Limited

	Emission Factors
AP-42	Section Description
1.3	External Combustion Sources
1.4	Natural Gas Combustion
1.5	LPG Combustion
1.11	Waste Oil Combustion
3.3	Gasoline and Diesel Industrial Engines
11.9	Western Surface Coal Mines
11.19.1	Sand and Gravel Processing
11.19.2	Crushed Stone & Pulverized Mineral Processing
13.2.1	Paved Roads
13.2.2	Unpaved Roads
13.2.4	Aggregate Handling and Storage Piles
13.3	Explosives Detonation
October 2006	SENES Consultants Limited 15

Typical Emission Factor ... 1

- Blasting
 - $-TSP (kg/blast) = 0.00022 (A)^{1.5}$
 - ♦ where A = horizontal area (m²) with blasting depth <=21metres</p>
- Truck Loading
 - $-TSP (kg/Mg) = 0.580/M^{1.2}$
 - ◆where M = material moisture content in %
- Bulldozing
 - $-TSP (kg/hr) = 2.6*s^{1.2}/M^{1.3}$
 - ♦where s = material silt content in %

October 2006

SENES Consultants Limited

Typical Emission Factor ... 2

- Dragline
 - $-TSP (kg/m3) = 0.0046*d^{1.1}/M^{0.3}$
 - ♦where d = drop height in metres
- Grading
 - $-TSP (kg/VKT) = 0.0034 * S^{2.5}$
 - ♦where S = mean vehicle speed in kph
- Active Storage Pile
 - $\overline{-TSP (kg/ha/hr)} = 1.8 * u$
 - ♦where u = wind speed in m/second

October 2006

SENES Consultants Limited

1

Typical Emission Factor ... 3

- Vehicle Traffic (unpaved roads)
 for industrial sites
 - $E = k (s/12)^a (W/3)^b$
 - ◆where E = size specific emission factor in lb/VMT
 - ◆s = surface material silt content in % (1.8 25.2)
 - ♦W = mean vehicle weight in tons(2 290)
 - ♦k, a and b are empirical constants

October 2006

SENES Consultants Limited

Typical Emission Factor ... 4 **INDUSTRIAL ROADS** Constant $PM_{2.5}$ **TSP** PM₁₀ k (lb/VMT) 4.9 0.15 1.5 0.9 0.7 0.9 a h 0.45 0.45 0.45 SENES Consultants Limited

Typical Emission Factor ... 5 ◆ DIESEL ENGINES - typically emissions of PM and NO_x - emission factor has the units of kg/VKT • VKT = Vehicle Kilometre Travelled • applies to: - construction trucks - front end loaders - excavators - product delivery trucks - generators in units of g/hp-hr

Control of Emissions

- control at source
 - engines
 - processing equipment
- control of dust
 - watering of roads
 - applying surface sealers (roads and storage piles)
 - wind breaks
 - vehicle speeds
 - dust barriers
 - pit retention

October 2006

SENES Consultants Limited

2

Pit Retention

(Thompson, 1994)

- ◆ a pit behaves in a way that traps some particulate matter based on its gravitational settling velocity, the speed of the wind and the concentration of dust in the pit
- also depending upon the shape and size of the pit and the speed of the wind, the emission point for dust can move upwind

October 2006

SENES Consultants Limited

Vegetation Screening

(Watson and Chow, 2000)

- showed that ~75% (range 60-90%) of suspended PM₁₀ remains within 1-2 metres above the ground
 - means that a 2 metre barrier can block atmospheric transfer of a substantial amount of PM
- also showed a 90% reduction in PM₁₀ after about 100 metres of travel
 - landscaping reduces dust dramatically: for example in a 5 m/second wind: TSP by 95%, PM₁₀ by 75% and PM_{2.5} by 22% after 52 metres of travel

October 2006

SENES Consultants Limited

2:

Summary

SURFACE MINING

- there are codified industry sector focused calculation programs that the MOE has accepted (such as ECHO 127 for the aggregate sector)
- there are many cost effective ways to reduce emissions leaving the property

October 2006

SENES Consultants Limited