BEV FLEET MAINTENANCE AND RELIABILITY HALEY BLINN & SAKETH ADIRAJU CIM MEMO - 2023

CURRENT OFFERING BATTERY ELECTRIC LOADERS AND TRUCKS

Dimension (L-W-H)	11.8 x 2.9 x 2.6 m
Capacity	18 000 kg
Bucket range	6.3 - 8.6 m ³
Weight (operating)	52 000 kg
Power, continuous	540 kW
Speed (loaded, 0%)	27.5 km/h

TH5	50B
Dimension (L-W-H)	11.1 x 3.3 x 2.9 m
Capacity	50 000 kg
Dump box	28 m ³
Weight (operating)	49 600 kg
Power, continuous	540 kW
Speed (loaded, 0%)	37 km/h

TH665B

Dimension (L-W-H)	11.6 x 3.5 x 3.6 m
Capacity	65 000 kg
Dump box	40 m ³
Weight (operating)	56 400 kg
Power, continuous	540 kW
Speed (loaded, 0%)	33 km/h

*commercially available 2024

ECONOMICS & OPERATING COSTS ~40% REDUCTION VS DIESEL TO BE EXPECTED

BEV REPAIR & MAINTENANCE BENEFIT BENCHMARKS

% reduction in lifecycle repair & maintenance cost vs. diesel equivalent

FACTORS DRIVING THE BENEFITS As mentioned in benchmark sources

- · Less maintenance labor and downtime due to lack of
 - Transmission
 - Exhaust systems
 - Fuel systems
 - Spark plugs
 - Oxygen sensors
 - Fuel, engine air and oil filters
- Reduced wear and consumables use
 - Less brake pad wear due to regenerative braking
 - 60-80% lower overall fluids consumption⁷

1 Argonne National Laboratory, 2021 2 FTA Research, 2018 3 NREL, 2020 4 Berlin & al. 2020 5 World Resources Institute via Curbed, 2018 6 Conexpo Con/Agg 2022 7 McKinsey 2021

LH518B

LH517

TH550B

DESIGN **BEV VS. DIESEL MACHINE DIFFERENCES**

pump wear due to speeds er than by engine speed

ESEL MACHINE	BATTERY-EL	ECTRIC MACHINE (Generation 3)
JOR COMPONENTS D PARTS Diesel engine Air intake & exhaust Torque Converter		 Diesel engine Air intake and exhaust Torque Converter Transmission Axles (T) Fuel tank
Transmission ADDED Axles Differentials Brakes Hydraulic pumps		 Battery lift rack Batteries Traction motors Hydraulic pump motors Inverters Wheel end reducers (T) Drop box (L)
Hydraulic cylinders Filters (fuel, air, oil)		 Brake assembly: regenerative braking significantly less use, no midlife rebuild Filters: no fuel or air filters, lower fluid flow from on-demand hydraulics Hydraulics: less pump wear due to spe on-demand rather than by engine spee

30-40% lower operating cost (excluding fuel and batteries)

~50% fewer maintenance procedures / year

D

MA AN

.

.

. .

.

.

.

DESIGN MAJOR COMPONENT INDICATIVE LIFE HOURS

DIESEL MACHINE

MAJOR COMPONENTS

- Diesel engine 15,000hrs
- Air intake & exhaust 6,000 hours
- Torque Converter 10,000 hours
- Transmission 10,000 hours
- Axles 15,000 hours
- Differentials 10,000 hours
- Brakes 7,000 hours
- Hydraulic pumps 6,000 hours
- Hydraulic cylinders 6,000 hours

BEV

MAJOR COMPONENTS

- Electric drive motors 40,000hrs
- Inverters & HV components 40,000
 hours
- ATF Cooling motors 30,000 hours
- Pumps & Cylinders 7,000 hours
- Brakes: 15,000 hours or more

LIFECYCLE IMPACT

30-40% lower operating cost (excluding fuel and batteries)

~**50%** fewer maintenance procedures / year

ECONOMICS & OPERATING COSTS

PLANNED MAINTENANCE TASKS COMPARISON

Diesel	hours	- 1000	HOU	IRS
Maintenance procedure			~	Notes
Perform the maintenance procedures of all relevant shorter intervals at the same time.	٩			See the instructions for reading maintenance cards.
FRAME STRUCTURES	-			
Change the fuel cap breather element	0	239		
POWERPACK				
Visually check the exhaust gas purifier	۲	271		
Inspect the check valve in the scavenge line	۲	272		
Inspect the cooling system	٩	273		
Change SCR pump filter element	0	276		
POWERTRAIN	-	_	_	
Change the transmission oil and oil filter elements	0	305		
Change the upbox oil	8	310		
Change the oil in the planetary hubs and differentials	0	315		
Check the tightenings of axle fastening nuts	۲	317		
HYDRAULICS				
Change the brake hydraulic oil	0	346		
Test the pilot system hydraulic pressure	0	348		
Test the steering system hydraulic pressure	Ø	350		
Test the box hydraulic pressure	0	351		
Test the ejector box hydraulic pressures (option)	0	352		
Check the suspension system pressure	0	353		
Check the precharge pressure of the brake system pressure accumulators	Ø	355		

Operation hours - 1000 HOURS				
Maintenance procedure		運動	~	Notes
Perform the maintenance procedures of all relevant shorter intervals at the same time.	۲			See the instructions for reading maintenance cards.
POWERTRAIN				
Change the planetary hubs oil	5	192		1
HYDRAULICS				
Check the main hydraulic pump pressure	3	205		

* 50-ton diesel vs. 50-ton battery electric truck

-55% Yearly maintenance procedures with BEV

ECONOMICS & OPERATING COSTS

MAINTENANCE HOURS COMPARISON

MACHINE PERSON-HOURS PER PM 48 50 45 40 ³⁵ 30 25 24 sunoH 19.3 14.4 12 9.25 10 5 0 TH550B TH550B TH551i TH551i TH551i TH550B 250 Hour PM 500 Hour PM 1000 Hour PM

*TH551i data reflects Sandvik global average, TH550B data taken from customer study

- BEV takes 40-75% of Diesel PM hours
- More uptime and reliable components has led to customer site(s) seeing 92% fleet availability

ECONOMICS & OPERATING COSTS BEV TOTAL COST OF OWNERSHIP AT PARITY WITH DIESEL

250.00

200.00

50 00

0.00

Year 1

Year 2

Year 3

TH551i TH550B

(CAD) 150.00

Per Hour 00[.]001

Cost

Maintenance OPEX accounts for 20-25% of TCO of fleet depending on haulage scenario, reduction of 40% on BEV machine maintenance OPEX can result in ~8-10% in fleet total TCO savings

Year 4

Year 5

Average Lifetime

10

ECONOMICS & OPERATING COSTS ACTUAL BEV MACHINE OPERATING COSTS VS. INDICATIVE

ACTUAL vs. INDICATIVE MACHINE OPERATING COSTS 80 75.07 70 60.10
 Cost per Hour (\$CAD)

 0
 8
 6
 9
 34.26 27.27 23.00 22 05 10 0 Truck 1 Actual **BEV** Indicative Diesel Indicative Truck 2 Actual **BEV** Indicative Diesel Indicative 8000 Hours 5500 Hours

- Two trucks from same site, BEV truck 1 (8000 hours) landing higher than indicative expectations
 - Customer's first BEV unit, technician & operator learning curve
 - Truck 1 was 3rd truck ever built
- Truck 1 still falling under diesel indicative costs
- Truck 2 (5500 hours) falling in-line with indicative expectations
- Monitoring continuously

FLEET LABOUR

7 – 10 MACHINES, BATTERIES AND CHARGING SYSTEMS

4 MECHANICS

1 WAREHOUSE WORKER

1 MANAGER

- 11 12 people team
- 7 10 machines
- 1.1 1.7 persons per machine

BATTERY DESIGN

Chemical energy storage element with safe chemistry and built-in protections

2. MODULE

Low voltage for safe service and simple replacement

3. PACK

> Battery Management System, fusing & disconnects, cooling infrastructure

4. CAGE Robust mechanical protection, mobility and swap-ability

5. CHARGING SYSTEM

Modular, stackable, variable voltage input

BATTERY CHARGE AND SWAP BAY

Typical design, many alternative layouts possible Sandvik experts will consult in bay design and tooling

MAINTENANCE PARTS COSTS, \$CAD / HOUR

- Does not include battery rental rate (or capital ownership) costs
- Expected cost for all required maintenance parts 4-5 CAD/hr for one machine with 2x batteries and a full charging system
- Annual maintenance kits available
- Can be covered by a separate parts supply agreement with Sandvik

ROUTINE MAINTENANCE

Image: set of the set of

BAAS MAINTENANCE MANUAL

Battery maintenance amounts to ~5-10hrs per month per battery and ~5hrs per charging system

- Varies based on use of batteries
- Battery capacity testing & balance
- Annual seals & washers change
- Charger air filter replacement
- Charging system inspections

SITE EXAMPLE – AVAILABILITY AND LABOUR

COLLECTIVE BATTERIES, CHARGERS, COOLER PM TIME

SITE EXAMPLE – AVAILABILITY AND LABOUR

BATTERY SERVICE BAY

TWO RECOMMENDED OPTIONS FOR SERVICE BAY WITH OVERHEAD CRANE

MAINTENANCE PHILOSOPHY

BEV ECOSYSTEM REQUIRES ALL STAKEHOLDER BUY-IN FOR SUCCESS

- The BEV ecosystem requires a strong network of systems, procedures, cross-department communication, planning & scheduling practices to maximize success
- Although less overall maintenance per unit, increased asset-base requires more complex planning & scheduling
- Several assets need to be functioning in order to support the machine

