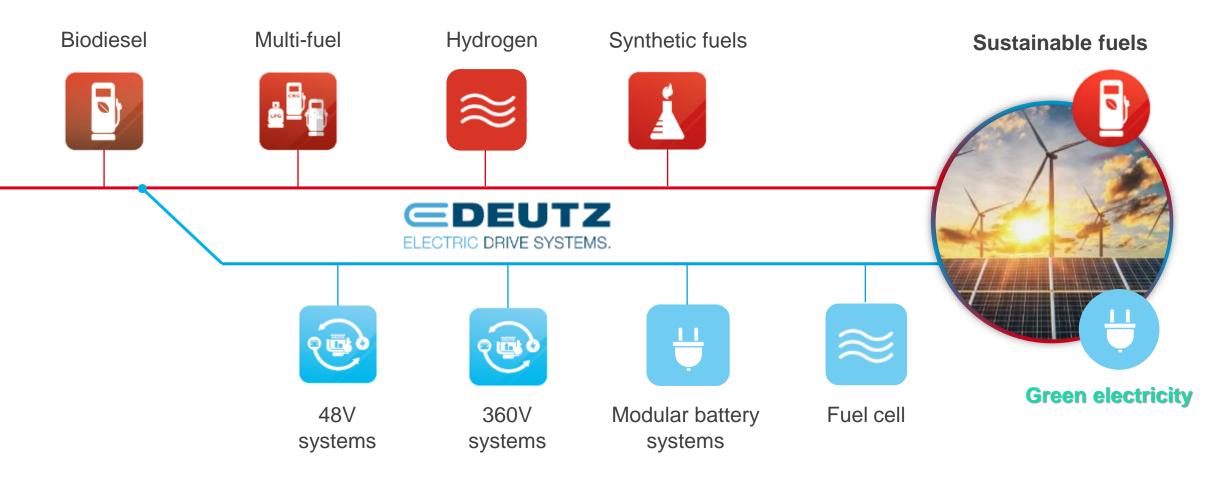


Solutions for CO2-free Powertrains

- DEUTZ H2 Hydrogen Engine

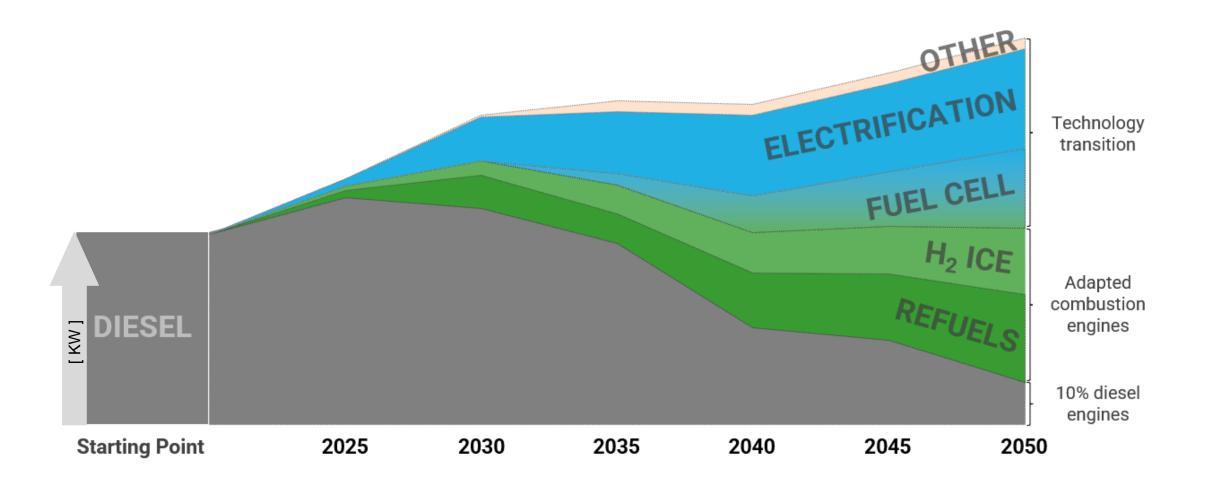
MDEC 2023



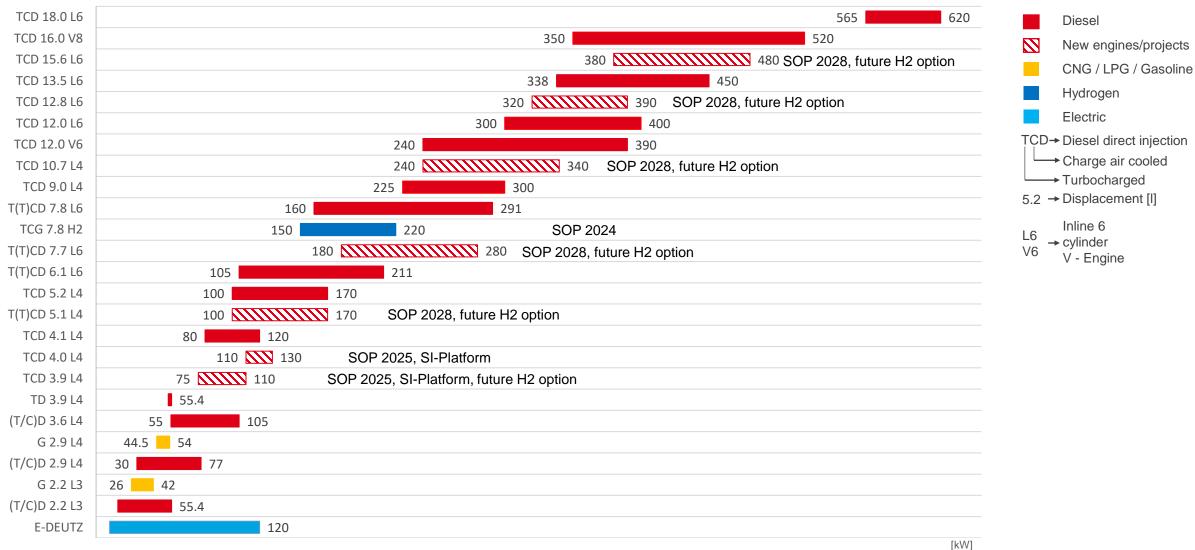
- Dual strategy for a Sustainable Drive System Portfolio
- Introduction to DEUTZ H2 Internal Combustion Engine (ICE)
- Emissions Characteristics of the TCG7.8H2
- Summary

Tackling the challenges in off-highway applications

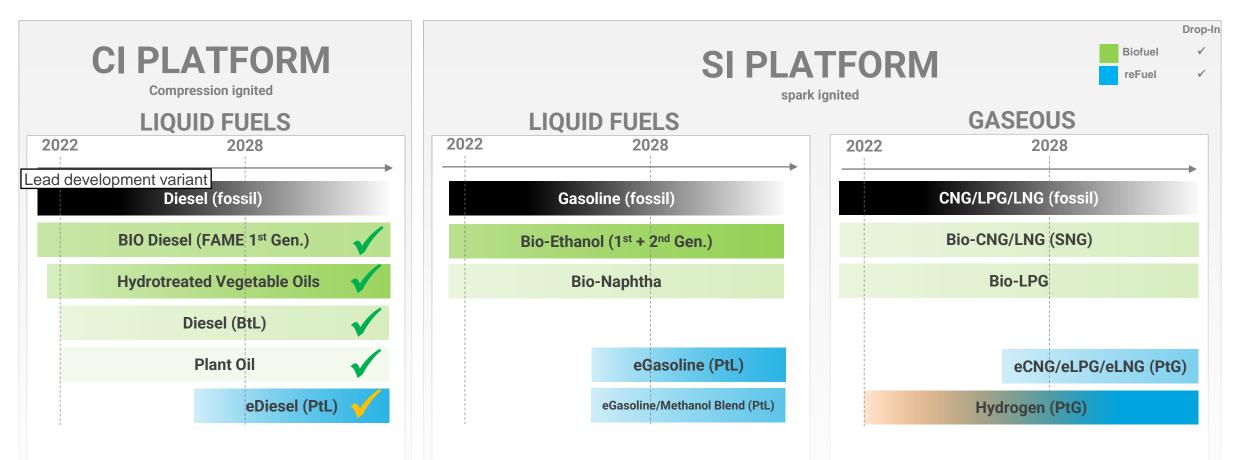
Open-minded approach to technology



Sustainable Drive Portfolio for the CO₂-free Construction Site

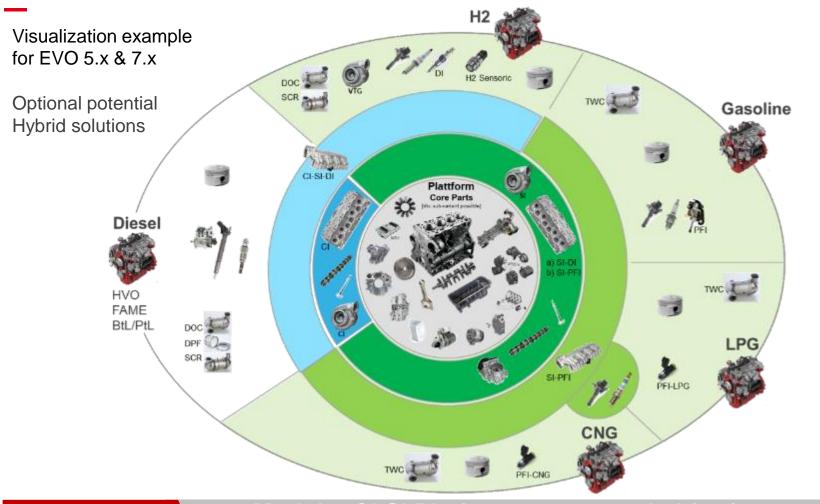

Technology Allocation of DEUTZ Engines Until 2050

DEUTZ Engine Portfolio


Scenario 2028+: Engines for high & low regulated markets

Future fuels: Diesel / Renewables / GAS / Gasoline / H2

DEUTZ Expert Assessment

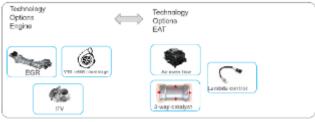

Key Message

- DEUTZ Modular CI-SI engine platform to prepare for future fuel mix
- Tier 5 technology to be detailed

© DEUTZ AG

Future fuels: Diesel / Renewables / H2 / GAS / Gasoline

Vision: Modular CI-SI Engine Platform for T5/Stage VI Evo



Vision: EAT System T5/Stage VI

EAT for CI-Platform

EAT for SI-Platform

EDG solution for CI-SI Platform→ Engine without EAT

Key Message

- Modular CI-SI Platform recommended for future readiness (variant consolidation)
 Platform concept as enabler for future volume concentration at suppler
 - EAT for SI less complex than for CI

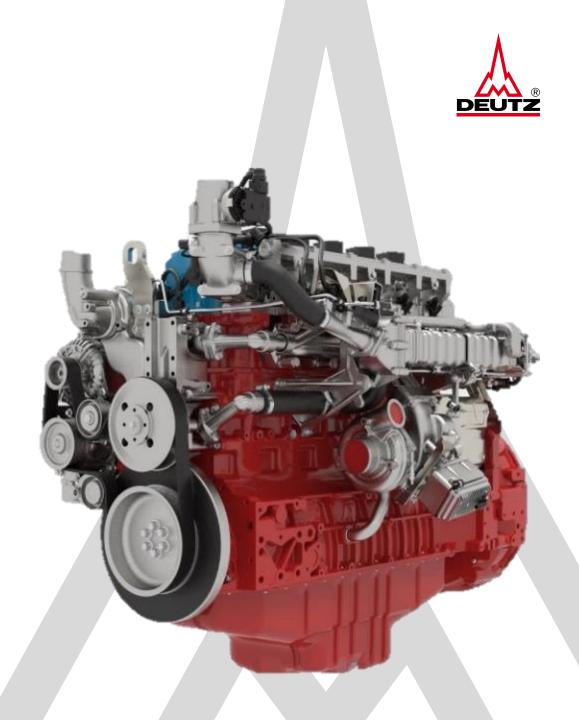
Future Fuels: What is driving clean fuel development?

Vision: availability of alternative clean fuels: H2, Electric, etc.

Federal Policy laws Enacted:

- Infrastructure Investment & Jobs ACT (IIJA)
 - \$7 billion available for Hydrogen Hubs
 - \$1 billion available for Hydrogen Production Research
- Inflation Reduction Act (IRA)
 - \$3/kg Production Tax Credit for Clean H2 (green), \$40K/truck
 - Improved economics of hydrogen as a fuel across the economy

State Policy laws Enacted:


- ACF Advanced Clean Fleet Rule (California)
- Tax Credits, Vehicle & Infrastructure Incentive Programs

Key Message

Programs at the Federal Level Drive Innovation for Fuel Supplies (IRA, IIJA)
 Programs and Mandates at the State Level Influence H2 Technology and Supply

DEUTZ (H2) Hydrogen Engine

Advantages of a Hydrogen engine

DEUTZ TCG 7.8 H2

- CO_2 -free Combustion: $2H_2 + O_2 \rightarrow 2H_2O^*$
- Economic alternative to other technologies
 - Attractive overall cost perspective (Initial invest is lower than with Fuel Cell drive)
 - Retrofit existing fleets possible (same drive train, additional H2supply/tank plus safety)
- Could be industrialized in a short time with proven supplier infrastructure and existing production capacities
- Suitable for low H₂-gas qualities (lower costs, less processing than with fuel cells)
- High reliability grounded on proven base engine tech.
- Increasing H₂-infrastructure, available Maintenance-network for combustion engine

*) < 1 g CO₂/kWh * Idealized

DEUTZ TCG 7.8 H₂ Hydrogen Internal Combustion Engine

An engine with a wide range of applications

Off-Road applications

- Excavators
 - Tractors & agricultural machinery
 - Mining

- Generators (GenSets)
- Block heat and power plants

Rail applications

- Regional trains
- Special vehicles

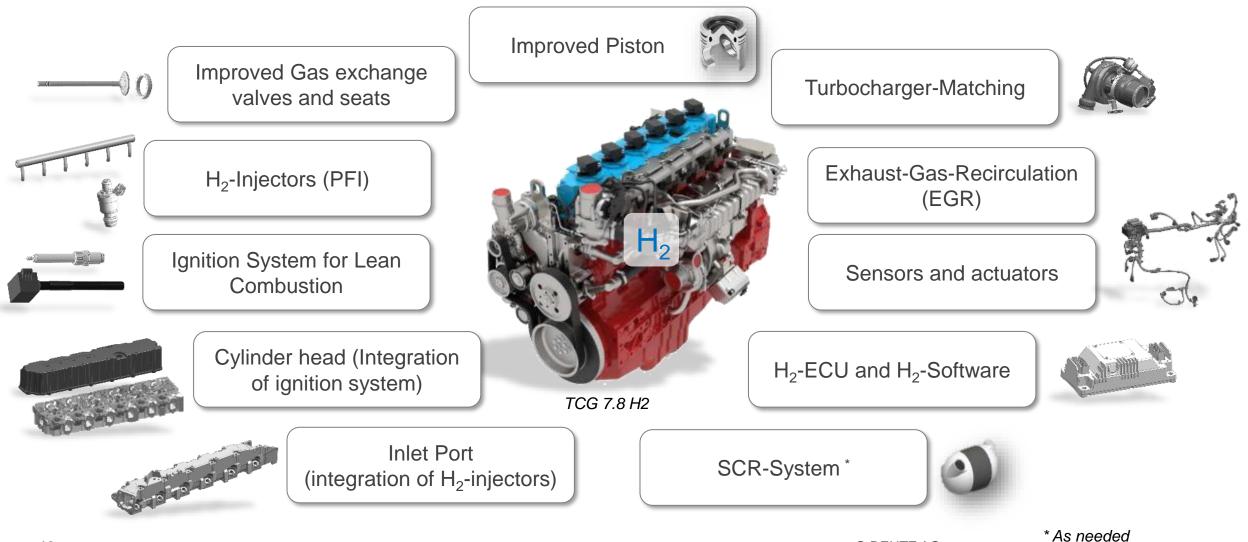
City and intercity buses*

- Medium range buses, 12m
- Complement to BEV city centre fleets

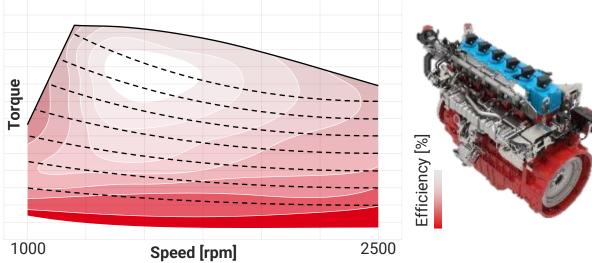
Delivery trucks*

- 16-18t trucks
- delivery traffic

Marine applications**


- * On development request
- ** Possible future development

© DEUTZ AG


Conversion from Diesel- to Hydrogen engine

Applications

Specification	
Cylinder	6 in-line
Displacement	7,7551
Bore / stroke	110 / 136mm
Max. power	220 kW @ 2200rpm
Max. torque	1000 Nm @ 1000 – 1600rpm
Certification	Planned EU Stage V, EU Zero Emission ¹
Exhaust aftertreatment	SCR ²

1. <1 g CO₂/kWh 2. necessary for high power density and dynamic

SERIES PRODUCTION IS PLANNED FOR 2024

Supportive Info for the Use Case Discussion

DEUTZ cooperation for H2 Tank System

- System up to 700bar operating pressure
 - Outlet pressure 30bar
- Refueling time down to 10 minutes
- Certification: R134, HGV-2, ADR

-Application areas

 Tanks are Type IV liners (2140mmx560mm / <u>185 kg</u>) made of carbon fiber composites

DEUTZ partners with experts capable to support in these projects

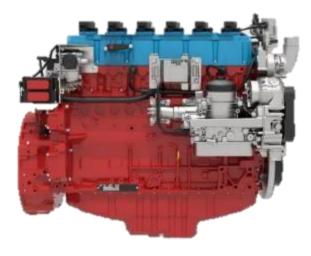
Sneak preview on key facts

Target Engine Specification for development:

Cylinder

- 6 inline
- Displacement
- 7.8 L
- Bore / Hub
- 110 / 136 mm
- Max. Power
- Max. Torque

Useful Life:


1000 Nm @ 1400 - 1600 rpm • H2 consumption: up to ~19 kg/h @max. power

220 kW @ 2200 rpm

- Hydrogen quality: ISO 14687 min. <u>98% or higher</u>
- Pressure interface:
 - 30 bar 10,000 hr
- Certification*: Stage V, US SI Tier 2 •
- Exh. After-Treatment*: Possible OC** and SCR
- Emission Target:

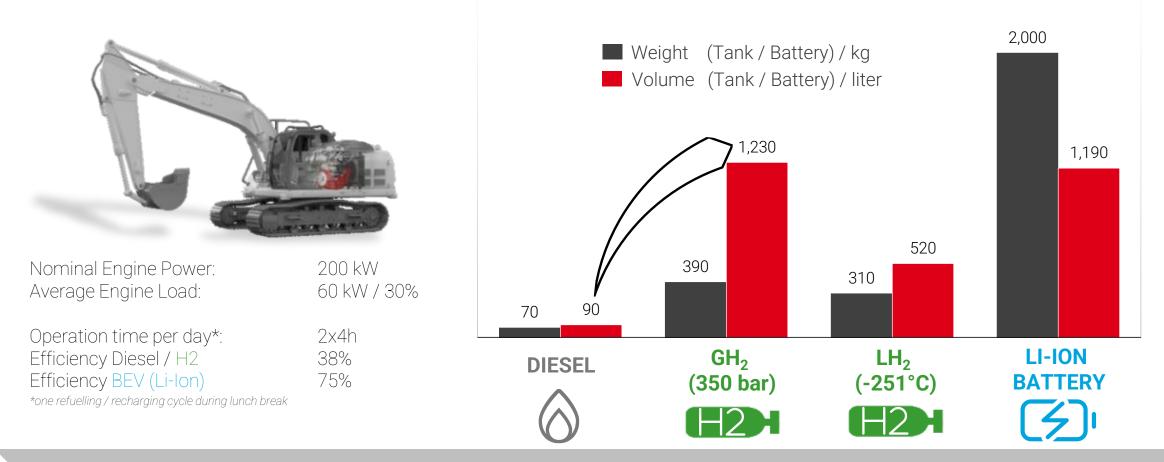
H2 Re-fueling / Infrastructure

Task:

- Assessment of H2 re-fueling infrastructure
 - At construction site vehicles and agricultural machinery

Challenge:

- The LHV of diesel is 45.6 MJ/kg whereas H2 is ~120MJ/kg,
- However,
 - Hydrogen gas is typically 5.7% of the total mass of fuel storage system: Leading to an overall H2 energy density of 6.8 MJ/kg
 - Construction and agricultural machinery limited mobility (work performance due to mass)
 - ➔ Provision of hydrogen re-fueling directly on site



Solutions for CO₂-free Powertrains

Case Study: Gravimetric and Volumetric Comparison of Energy Carriers

DIMENSION OF ENERGY CARRIER SYSTEM

TANK MASS AND VOLUME ARE A CHALLENGE

TCG 7.8 H2 – Emission Performance

Preliminary Results from Standard Test Cycles

C1 and RMC data taken post SCR (tailpipe out), no DPF

			NO	NO2	NOx	НС	СО	PM	CO2	02	PN
			g/kW-hr								
er Category (Test Cycle	C1	0.012	0.005	0.017	0	0	0.001	5.0		
		RMC	0.011	0.009	0.020	0	0	0.001	4.9	581	2.22E+09
	US EPA limits (1039, 1048)	Tier 4 - Cl			0.40	0.19	3.5	0.02			
		Tier 2 - Large SI			0.8		20.6				
	EU ST V Limits	CI			0.4	0.19	3.5	0.015			1.00E+12
		SI			0.4	0.19	3.5	0.015			1.00E+12

- Ambient air is 0.04% (~421ppm) CO2 which is measured at tailpipe out
- CO2 contribution from DEF (Diesel Exhaust Fluid): H_2N -CO- $NH_2 \rightarrow CO_2$

*Emission data presented are preliminary, not part of a certification

Key Message

- All regulated emissions are within current US and EU
 - H2 is considered CO2-free since the fuel does not contain Carbon

TCG 7.8 H2 – Emission performance

Comparison with underground mine ventilation requirements

C1 data

		kW @ RPM	After- treatment	NOx	HC	СО	РМ	CO2	Ventilation (cfm)	
				g/kW-hr						
CI - Tier 3	TCD 2013 L06	190 @ 2300	No	3.8	0.12	0.41	0.097	756	10,700	
CI - Tier 4	TCD 6.1 L6	180 @ 2300	Post	0.08	0.012	0.01	0.012	773	11,000	
SI	TCD 7.8 H2*	220 @ 2200 ·	Pre	0.51	0	0.023		4.3	500	
			Post	0.02	0	0	0.001	4.9	500	

*Emission data presented are preliminary, not part of a certification or approval

Hydrogen ICE present opportunity to reduced ventilation rates

Zero Emissions vs. Zero Carbon Emission

- H2 ICE can be more efficient than diesel with near zero or zero-carbon emission acceptance
 - Still some carbon emissions from lubricating oil and DEF
 - Emissions of NOx from high temp/press combustion. Emissions control could be needed
- Smaller aftertreatment system footprint compared to Diesel

Take-away thoughts

- Fuels Sourcing Improvements to be made within the fueling infrastructure
- Gas vs. Liquid H2 On-site storage
- Safety and Training managing high pressure or low-temp storage

Thank you!

DEUTZ AG Ottostr. 1 51149 Köln Telefon: +49 (0) 221 822-0 Fax: +49 (0) 221 822-3525 E-Mail: info@deutz.com www.deutz.com